Thiol–ene Coupling of Renewable Monomers: at the forefront of bio-based polymeric materials
نویسنده
چکیده
Plant derived oils bear intrinsic double-bond functionality that can be utilized directly for the thiol–ene reaction. Although terminal unsaturations are far more reactive than internal ones, studies on the reversible addition of thiyl radicals to 1,2disubstituted alkenes show that this is an important reaction. To investigate the thiol–ene coupling reaction involving these enes, stoichiometric mixtures of a trifunctional propionate thiol with monounsaturated fatty acid methyl esters (methyl oleate or methyl elaidate) supplemented with 2.0 wt.% Irgacure 184 were subjected to 365-nm UV-irradiation and the chemical changes monitored. Continuous (RT– FTIR) and discontinuous (NMR and FT–Raman) techniques were used to follow the progress of the reaction and reveal details of the products formed. Experimental results supported by numerical kinetic simulations of the system confirm the reaction mechanism showing a very fast cis/trans-isomerization of the alkene monomers (<1.0 min) when compared to the total disappearance of double-bonds, indicating that the rate-limiting step controlling the overall reaction is the hydrogen transfer from the thiol involved in the formation of final product. The loss of total unsaturations equals thiol consumption throughout the entire reaction; although product formation is strongly favoured directly from the trans-ene. This indicates that initial cis/trans-isomer structures affect the kinetics. High thiol–ene conversions could be easily obtained at reasonable rates without major influence of side-reactions demonstrating the suitability of this reaction for network forming purposes from 1,2disubstituted alkenes. To further illustrate the validity of this concept in the formation of cross-linked thiol–ene films a series of globalide/caprolactone based copolyesters differing in degree of unsaturations along the backbone were photopolymerized in the melt with the same trithiol giving amorphous elastomeric materials with different thermal and viscoelastic properties. High thiol–ene conversions (>80%) were easily attained for all cases at reasonable reaction rates, while maintaining the cure behaviour and independent of functionality. Parallel chain-growth enehomopolymerization was considered negligible when compared with the main coupling route. However, the comonomer feed ratio had impact on the thermoset properties with high ene-density copolymers giving networks with higher glass transition temperature values (Tg) and a narrower distribution of cross-links than films with lower ene composition. The thiol–ene systems evaluated in this study serve as model example for the sustainable use of naturally-occurring 1,2-disubstituted alkenes at making semi-synthetic polymeric materials in high conversions with a range of properties in an environment-friendly way.
منابع مشابه
Advanced polymeric scaffolds for functional materials in biomedical applications
Advancements in the biomedical field are driven by the design of novel materials with controlled physical and bio-interactive properties. To develop such materials, researchers rely on the use of highly efficient reactions for the assembly of advanced polymeric scaffolds that meet the demands of a functional biomaterial. In this thesis two main strategies for such materials have been explored; ...
متن کاملNew Monomers and Polymers from Plant Oils via Thiol-ene Additions
We recently reported on the synthesis of different chain length α,ω-diester monomers from plant oil derived fatty acid esters or fatty alcohols via olefin cross-metathesis with methyl acrylate taking advantage of natures "synthetic pool" of fatty acids with different chain lengths and positions of double bonds. [1,2,3] Similarly, we could show that their cross-metathesis with allyl chloride all...
متن کاملStructurally diverse polyamides obtained from monomers derived via the ugi multicomponent reaction.
The combination of the Ugi four-component reaction (Ugi-4CR) with acyclic diene metathesis (ADMET) or thiol-ene polymerization led to the formation of poly-1-(alkylcarbamoyl) carboxamides, a new class of substituted polyamides with amide moieties in the polymer backbone, as well as its side chains. 10-Undecenoic acid, obtained by pyrolysis of ricinoleic acid, the main fatty acid of castor oil, ...
متن کاملThiol-ene coupling: An efficient tool for the synthesis of new biobased aliphatic amines for epoxy curing
Thiol-ene coupling interestingly allowed to synthesize reactive primary and multi-functional amines from renewable resources with high yield and in mild conditions. These syntheses were performed in two steps from triallyl pentaerythritol (PE-Al) by esterification of the hydroxyl function with a long or medium alkyl chain and thiol-ene coupling with the cysteamine hydrochloride on the allyl fun...
متن کاملFunctional Conducting Polymers via Thiol-ene Chemistry
We demonstrate here that thiol-ene chemistry can be used to provide side-chain functionalized monomers based on 3,4-propylenedioxythiophene (ProDOT) containing ionic, neutral, hydrophobic, and hydrophilic side chains. All reactions gave high yields and purification could generally be accomplished through precipitation. These monomers were polymerized either chemically or electro-chemically to g...
متن کامل